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Abstract

The purpose of this paper is to show the advantages that represent the use of
multisymplectic numerical methods that preserve the discrete multisymplectic
conservation law in the study of solitary wave propagation and interaction for
the Klein–Gordon–Zakharov equations in plasma physics. Numerical results
on simulating the propagation of a single solitary wave and the interaction
of two solitary waves are reported to illustrate the efficiency of the presented
method.

PACS numbers: 02.60.Cb, 45.20.Jj, 52.35.Mw

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The Klein–Gordon–Zakharov equations (KGZE) describe the interaction between Langmuir
waves and ion sound waves [1, 2]. It takes an important role in the investigation of the
dynamics of strong Langmuir turbulence in plasma physics. The KGZE can be derived from
the two-fluid Euler–Maxwell system (see [3, 4], for instance). After suitable scaling it becomes
in a dimensionless scalar form

c−2∂2
t φ − �φ + c2φ + φψ = 0, λ−2∂2

t ψ − �ψ = �|φ|2, (1)

where φ is the electric field, ψ is the density fluctuation of ions, c2 is the plasma frequency,
and λ is the ion sound speed.

Masmoudi and Nakanishi [5, 6] proved that in the high-frequency limit c → ∞ the KGZE
(1) reduce to the Zakharov system

2i∂tu − �u + ψu = 0, λ−2∂2
t ψ − �ψ = �|u|2. (2)
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In fact, we can eliminate the diverging term c2φ in (1) by changing φ = eic2t u to obtain

c−2∂2
t u + 2i∂tu − �u + ψu = 0, λ−2∂2

t ψ − �ψ = �|u|2. (3)

If we take the limit c → ∞, we get the usual Zakharov system (2). Further, in the simultaneous
high-frequency and subsonic limits c → ∞, λ → ∞, the system (1) reduces to the nonlinear
Schrödinger equation (NLS)

2i∂tu − �u − |u|2u = 0, ψ = −|u|2. (4)

This can be seen by setting λ → ∞ and letting ψ = −|u|2 in (2).
In this paper, we consider the following one-dimensional KGZE:

∂2
t φ − ∂2

xφ + φ + φψ = 0, ∂2
t ψ − ∂2

xψ = ∂2
x |φ|2. (5)

There are a number of works on the qualitative research of the global solutions for the KGZE
(5) problem in the literature (see [8–10], for details). Chen [11] considered orbital stability
of solitary waves for the KGZE (5). Zhao and Sheng [12] obtained explicit traveling wave
solutions of the KGZE with the aid of the symbolic computation system. More recently,
Shang et al [13] used the extended hyperbolic functions method for analytic treatment for the
KGZE and obtained the multiple exact explicit solutions. Specifically, Shang et al derived the
following bell-type solitary wave solutions for the KGZE:

φ(x, t) = ±
√

2(k2 − w2 + 1 + C)(k2 − w2)

−w2
sech

⎡
⎣

√
(k2 − w2 + C + 1)

w2 − k2
(ξ + ξ1)

⎤
⎦ ei(kx+wt+ξ0),

(6)

ψ(x, t) = C − 2(k2 − w2 + C + 1)sech2

⎡
⎣

√
(k2 − w2 + C + 1)

w2 − k2
(ξ + ξ1)

⎤
⎦ ,

where k,w,C, ξ0 and ξ1 are arbitrary constants, ξ = wx + kt , and (k2 −w2 + C + 1)(w2 − k2)

> 0.
The previous works mentioned above mostly focused on the approach to obtaining the

analytic solutions and the stability of the analytic solution. Qualitative investigation on
solutions is still insufficient, especially in studying the interaction of solitary waves. Therefore,
developing numerical methods as well as setting up numerical experiments for this class of
problems is highly important. However, up to now, few numerical methods and simulations
have been proposed for the KGZE. In [14], Wang et al presented conservative difference
methods for the KGZE.

As we know, the KGZE have similar shape to the Zakharov system. For the Zakharov
system, many numerical methods and numerical simulations have been reported. Previous
numerical studies include Fourier spectral methods [15], time-splitting spectral methods
[16, 17], conservative finite difference schemes [18–20], etc. Thus, it is of great interest
to develop an efficient, accurate numerical method for the KGZE.

In recent years, interest has grown rapidly in the Hamiltonian partial differential equations.
Bridges and Reich presented the concept of the multisymplectic integrator based on a
multisymplectic structure of some Hamiltonian PDEs such as the NLS and Klein–Gordon
equations [21, 22, 24]. Subsequently, the multisymplectic methods and the conservation laws
of several PDEs, such as the NLS [23, 27–29, 31, 32], the Zakharov system [33] and so on
were discussed to obtain their solutions numerically. A great deal of numerical experiments
and theory analysis show the advantages of the multisymplectic integrators in the structure, in
the local conservation property and in the long-time simulating capability.

The NLS equations and the Zakharov system are typical model equations for plasma
waves as well as other dispersive phenomena in physics. Recently, an upsurge of interest in
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the analytic solution as well as the numerical methods for these equations has arisen (see [7]
and references therein). However, the schemes used in [7] are not multisymplectic integrators.

To the best of our knowledge, there have been no studies on the multisymplecticity of
the KGZE. In this paper, we will show that the KGZE (5) is a multisymplectic Hamiltonian
system. As an application of this result, we will construct a multisymplectic pseudospectral
scheme for solving the KGZE (5) with periodic boundary conditions

φ|t=0 = φ0(x), φt |t=0 = φ1(x), ψ |t=0 = ψ0(x), ψt |t=0 = ψ1(x),

φ(xL, t)| = φ(xR, t), ψ(xL, t)| = ψ(xR, t),
(7)

where, φ0(x), φ1(x), ψ0(x) and ψ1(x) are given initial values.
The remainder of this paper is divided into four sections. In section 2, the multisymplectic

formulation and some conservation laws for the KGZE (5) are discussed. Section 3 is
concerned with multisymplectic Fourier pseudospectral discretizations for the KGZE (5).
Numerical experiments are given in section 4. We perform the numerical simulations of
propagation and head-on collision of solitary waves. Finally, some conclusions are contained
in section 5.

2. Multisymplectic formulation and conservation laws for the KGZE

A partial differential equation F(u, ut , ux, utx, . . .) = 0 is said to be multisymplectic if it can
be written as a system of first-order equations (8):

M∂tz + K∂xz = ∇zS(z), (8)

where, M, K ∈ Rd×d are skew symmetric, z(x, t) is the vector of state variables, S : Rd → R1

is a smooth function, and ∇zS(z) denotes the gradient of the function S = S(z) with respect
to variable z.

The multisymplectic formulation (8) is interesting for several reasons; one perhaps is the
existence of the multisymplectic conservation law

∂tω + ∂xκ = 0, (9)

where ω and κ are pre-symplectic forms:

ω = 1
2 dz ∧ M dz, and κ = 1

2 dz ∧ K dz, (10)

which define a symplectic spacetime structure. The multisymplectic structure naturally gives
rise to local conservation laws typically associated with Nöther’s theorem [21]. In fact, for the
Hamiltonian PDEs (8), when S is independent of x and t, it has local energy conservation law
and local momentum conservation law:

∂tE + ∂xF = 0, E = S(z) − 1
2 zT Kzx, F = 1

2 zT Kzt , (11)

∂t I + ∂xG = 0, I = 1
2 zT Mzx, G = S(z) − 1

2 zT Mzt . (12)

For periodic or vanishing at infinity boundary conditions for the functions F(z) and G(z),
one can obtain the global conservation laws of energy and momentum:

d

dt
E(z) = 0,

d

dt
I(z) = 0, (13)

where

E(z) =
∫
R

E(z(x, t)) dx and I(z) =
∫
R

I (z(x, t)) dx.

3
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We call a numerical algorithm for (8) a multisymplectic algorithm if it preserves a discrete
version of (9). For details, see [22–24], for instance.

In order to multisymplectify the KGZE (5), we set φ = u+iv, ∂xu = p, ∂xv = q, ∂tu = r,

∂tv = s, ∂tψ = ∂2
xf, ∂xf = g and z = (u, v, r, s, p, q, ψ, f, g)T . Then, the system (5) can

be rewritten as the following first-order system:

−∂t r + ∂xp = u + uψ,

−∂t s + ∂xq = v + vψ,

∂tu = r,

∂tv = s,

−∂xu = −p,

−∂xv = −q,

1
2∂tf = 1

2ψ,

− 1
2∂tψ + 1

2∂xg = 0,

− 1
2∂xf = − 1

2g,

(14)

or the standard Hamiltonian PDEs (8) with the two skew-symmetric matrices

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −1 0 0 0 0 0 0

0 0 0 −1 0 0 0 0 0

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1
2 0

0 0 0 0 0 0 − 1
2 0 0

0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

K =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1
2

0 0 0 0 0 0 0 − 1
2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The right-hand side of (8) is then given by the gradient of the scalar function

S(z) = 1
2 (u2 + v2) + 1

2 (u2 + v2)ψ + 1
2 (r2 + s2) − 1

2 (p2 + q2) + 1
4ψ2 − 1

4g2.

A straightforward calculation shows that the system (14) satisfies the multisymplectic
conservation law:
∂

∂t

(
dr ∧ du + ds ∧ dv +

1

2
dψ ∧ df

)
+

∂

∂x

(
du ∧ dp + dv ∧ dq +

1

2
df ∧ dg

)
= 0. (15)

4
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The density functions defined in (11)and (12) are given by

E = 1
2 (u2 + v2) + 1

2ψ(u2 + v2) + 1
2 (p2 + q2) + 1

2 (r2 + s2) + 1
4 (ψ2 + g2),

F = −(
utp + vtq + 1

2ftg
)
,

I = uxr + vxs − 1
2ψxf,

G = 1
2 (u2 + v2) + 1

2ψ(u2 + v2) − 1
2 (p2 + q2 + r2 + s2) + 1

4 (ψ2 − g2) + 1
2ψtf.

(16)

Integrating E and I over the spatial domain with periodic or vanishing at infinity boundary
conditions leads to the global conservation of energy and momentum (13), where

E =
∫
R

(
|φt |2 + |φx |2 + |φ|2 + ψ |φ|2 +

1

2
|g|2 +

1

2
|ψ |2

)
dx,

I =
∫
R

[
�(φxφ̄t ) − 1

2
ψxf

]
dx.

(17)

These are two important global conservative quantities for the KGZE (5).

3. Multisymplectic pseudospectral discretization of the KGZE

The Fourier transforms can leave the multisymplectic nature of a PDE unchanged, and that the
discretized Fourier system recovers the standard spectral discretizations leading to a system
of Hamiltonian ODEs which can be integrated by standard symplectic integrators [24, 27].

We consider a uniform spatial grid. Let 
 = [xL, xR] and L = xR − xL. The interval

 is divided into N equal subintervals with the grid spacing h = L/N , where the integer
N is even. The spatial grid points are given by xj = xL + hj, j = 0, 1, . . . , N − 1.
We denote by uj , vj , pj , qj , ψj , fj , gj the approximation to u(xj , t), v(xj , t), p(xj , t),

q(xj , t), ψ(xj , t), f (xj , t), g(xj , t), respectively, and introduce the notation

u = (u0, u1, . . . , uN−1)
T , v = (v0, v1, . . . , vN−1)

T , p = (p0, p1, . . . , pN−1)
T ,

q = (q0, q1, . . . , qN−1)
T , f = (f0, f1, . . . , fN−1)

T , g = (g0, g1, . . . , gN−1)
T .

(18)

By applying the Fourier pseudospectral method to equations (14) and using the first-order
Fourier pseudospectral differential matrix D1, we obtain

− d

dt
rj + (D1p)j = uj + ujφj ,

− d

dt
sj + (D1p)j = vj + vjφj ,

d

dt
uj = rj ,

d

dt
vj = sj ,

(D1u)j = pj ,

(D1v)j = qj ,

d

dt
fj = (

u2
j + v2

j

)
+ ψj ,

− d

dt
ψj + (D1g)j = 0,

(D1f)j = gj .

(19)

5
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The elements of D1 are

dj,s =
⎧⎨
⎩(−1)j+s

π

L
cot

(xj − xs)π

L
, s �= j,

0, s = j.

Note that D1 is a skew-symmetric matrix.
From the computational point of view, the evaluation of the pseudospectral Fourier

derivatives is computed by using the FFT algorithm instead of spectral differentiation matrix
in O(N log N) operations rather than O(N2).

Using the similar calculations in [27, 31], we can obtain the following semi-discrete
multisymplectic conservation laws:

d

dt
ωj +

N−1∑
k=0

djkκjk = 0, (j = 0, 1, . . . , N − 1), (20)

where

ωj = drj ∧ duj + ds ∧ dvj + 1
2 dψj ∧ dfj ,

κjk = duj ∧ dpk + dvj ∧ dqk + 1
2 dfj ∧ dgk + duk ∧ dpj + dvk ∧ dqj + 1

2 dfk ∧ dgj ,
(21)

which is a spectral discretization of the multisymplectic conservation law (9). Thus the Fourier
pseudospectral discretization preserves the multisymplectic structure of the PDEs (8).

The skew symmetry of D1 provides the conservation of total symplecticity. Since
DT

1 = −D1 and κjk = κkj , summing over the spatial index, equation (20) becomes

d

dt

N−1∑
j=0

ωj = 0, (22)

which implies the conservation of total symplecticity in time.
For the time discretization of (19), we use an implicit midpoint method for obtaining

−δ+
t rj + (D1pn+1/2)j = u

n+1/2
j + u

n+1/2
j φ

n+1/2
j ,

−δ+
t sj + (D1pn+1/2)j = v

n+1/2
j + v

n+1/2
j φ

n+1/2
j ,

δ+
t uj = r

n+1/2
j ,

δ+
t vj = s

n+1/2
j ,

(D1un+1/2)j = p
n+1/2
j ,

(D1vn+1/2)j = q
n+1/2
j ,

δ+
t fj = (

u
n+1/2
j

)2
+

(
v

n+1/2
j

)2
+ ψ

n+1/2
j ,

−δ+
t ψj + (D1gn+1/2)j = 0,

(D1fn+1/2)j = g
n+1/2
j ,

(23)

where δ+
t denotes the difference operator δ+

t zn
j = 1

�t

(
zn+1
j − zn

j

)
, u

n+1/2
j = 1

2

(
un+1

j + un
j

)
etc.

Rewriting (23) as the abstract form

Mδ+
t zn

j + K

N−1∑
j=0

djkz
n+1/2
k = ∇zS

(
z
n+1/2
j

)
, (24)

6
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it is now straightforward to show that the Fourier pseudospectral scheme (24) has N fully
discrete multisymplectic conservation laws:

δ+
t ωn

j +
N−1∑
k=0

djkκ
n+1/2
jk = 0, (j = 0, 1, . . . , N − 1), (25)

where

ωn
j = drn

j ∧ dun
j + dsn

j ∧ dvn
j + 1

2 dψn
j ∧ df n

j ,

κ
n+1/2
jk = du

n+1/2
j ∧ dp

n+1/2
k + dv

n+1/2
j ∧ dq

n+1/2
k + 1

2 df
n+1/2
j ∧ dg

n+1/2
k

+ du
n+1/2
k ∧ dp

n+1/2
j + dv

n+1/2
k ∧ dq

n+1/2
j + 1

2 df
n+1/2
k ∧ dg

n+1/2
j .

Taking the summation of equation (25) over all spatial grid points and noting that

N−1∑
j=0

N−1∑
k=0

djkκ
n+1/2
jk = 0,

we can obtain the full-discrete symplectic conservation law

N−1∑
j=0

ωn+1
j =

N−1∑
j=0

ωn
j .

4. Numerical experiments

According to [13], the KGZE has the bell-type analytic solitary wave solution (6). For
simplicity, in our numerical experiments, we take k = ν and ω =

√
ν2 + 0.5 . Thus the KGZE

(5) admits the following solitary wave solution:

φ(x, t, ν) = 1√
2ν2 + 1

sech(
√

ν2 + 0.5(x − x0) + νt) exp(i(ν(x − x0) +
√

ν2 + 0.5t))

ψ(x, t, ν) = −sech2(
√

ν2 + 0.5(x − x0) + νt),

(26)

where x0 and ν are constants, and ν indicates the propagating velocity of solitary wave, x0 is
the initial phase. The amplitude of the φ component is 1√

2ν2+1
, while the amplitude of the ψ

component is 1. In the following, our computations will work on the spatial domain
[−L

2 , L
2

]
,

over the time interval 0 � t � T with constant time step length �t and spatial step length
�x = L/N . Here N is the number of grid points for the spatial domain. We use periodic
boundary conditions, i.e.,

φ

(
−L

2
, t

)
= φ

(
L

2
, t

)
, ψ

(
−L

2
, t

)
= ψ

(
L

2
, t

)
.

4.1. Travelling of single solitary wave

We begin our study by simulating the evolution of a single solitary wave to test the accuracy
of the multisymplectic Fourier pseudospectral method. The initial values

φ0 = φ(x − x0, 0, ν), φ1 = φt(x − x0, t, ν)|t=0,

ψ0 = ψ(x − x0, 0, ν), ψ1 = ψt(x − x0, t, ν)|t=0

are obtained from (26) as t = 0.

7
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Figure 1. The evolution of numerical solutions. The real part (upper left) and imaginary part
(upper right) of ψ and ψ (bottom), respectively, with �t = 0.02 and N = 512.
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Figure 2. Amplitudes of solitary waves against time. Left plot: φ component, right plot: ψ

component.

Figure 1 presents the evolution of the numerical solutions φ, ψ for the solitary wave
in the time interval [0, 80] with ν = 0.5, x0 = −25,�t = 0.02 and N = 512. For the
solitary wave solution (26), the wave amplitude of the φ component is about 0.816 497. In
figure 2, the wave profile is plotted against time for two components of the KGZE. From the

8
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Figure 4. The convergence rate of the multisymplectic Fourier pseudospectral method in space:
�t = 0.0001, T = 5.

above results, we find that the waveforms keep their amplitudes and velocities near invariable
throughout the processes of simulations, which implies that the present method can preserve
the local properties of the travelling wave solution perfectly. Figure 3 shows the global energy
and momentum conservations. We see that the global energy and momentum are bounded
in long-time integration, and the scheme preserves the energy E and momentum I with the
accuracy of 10−7 and 10−5 in the L∞ norm, respectively. Thus, the method is stable in the
sense of the energy and momentum conservation laws.

To test whether the present method exhibits the expected convergence rates in time and
in space, we define the errors between numerical solutions and analytic solutions in the sense
of L2 and L∞ norms as

‖L(φ)‖2 =
⎛
⎝h

N−1∑
j=0

∣∣φ(xj , tn) − φn
j

∣∣2

⎞
⎠

1
2

, ‖L(φ)‖∞ = max
0�j�N−1

∣∣φ(xj , tn) − φn
j

∣∣, (27)

9
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Figure 5. The collision of two solitary waves in case 1. Left plot: |φ|, right plot: ψ .

‖L(ψ)‖2 =
⎛
⎝h

N−1∑
j=0

∣∣ψ(xj , tn) − ψn
j

∣∣2

⎞
⎠

1
2

, ‖L(ψ)‖∞ = max
0�j�N−1

∣∣ψ(xj , tn) − ψn
j

∣∣. (28)
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Figure 5. (Continued.)

Table 1. Accuracy of the multisymplectic Fourier pseudospectral method, N = 256, T = 10.

�t 1.0×10−2 5.0×10−3 4.0×10−3 3.0×10−3 2.0×10−3

‖L(φ)‖∞ 3.462×10−4 2.164×10−5 1.385×10−5 7.789×10−6 3.461×10−6

Order – 2.00 2.00 2.00 2.00

‖L(φ)‖2 5.416×10−4 3.394×10−5 2.179×10−5 1.241×10−5 5.895×10−6

Order – 2.00 2.00 2.00 2.00

‖L(ψ)‖∞ 3.786×10−4 2.361×10−5 1.509×10−5 8.498×10−6 3.806×10−6

Order – 2.00 2.00 2.00 2.00

‖L(ψ)‖2 4.922×10−4 3.076×10−5 1.965×10−5 1.107×10−5 4.922×10−6

Order – 2.00 2.00 2.00 2.00

Table 1 reports the errors between the exact solutions and the numerical solutions derived
from the scheme (23), and the convergence order of accuracy in time. It can be seen that the
scheme is of second-order accuracy in time.

To test whether the present method exhibits the expected convergence in space, we perform
some further numerical experiments for various values of N and a fixed value of time step �t .
In these experiments, we take �t = 10−4 so that the time discretization error can be ignored
compared to the spatial discretization error.

Figure 4 presents, in the logarithmic scale, the evolution in the space of the error of
the numerical solution for the present method. One can see that the numerical solution
converges rapidly to the accurate solution in the space, which is an indication of exponential
convergence.

4.2. Collision of two solitary waves

In this subsection, two different head-on interaction cases are considered. In the first case,
solitary waves of equal amplitude propagate at equal initial speed in opposite directions
(ν1 = −ν2 = 0.4), and in the second case solitary waves of different amplitudes propagate at
initial speeds (ν1 = 0.4 and ν2 = −0.2). The corresponding initial values are given as

φ0 = φl(x − xl, 0, ν) + φr(x − xr, 0, ν), φ1 = [φl(x − xl, t, ν) + φr(x − xr, t, ν)]|t=0

ψ0 = ψl(x − xl, 0, ν) + ψr(x − xr, 0, ν), ψ1 = [ψl(x − xl, t, ν) + ψr(x − xr, t, ν)]|t=0,

(29)

where xl, xr are initial phases.
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Figure 6. Amplitudes of solitary waves against time. Left plot: φ component, right plot: ψ

component.

Figure 7. Collisions of two solitary waves in case 1. Top plot: |φ|, bottom plot: −ψ .
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Figure 8. The collision of two solitary waves in case 2. Left plot: |φ|, right plot −ψ .

Case 1: head-on collision of solitary waves with equal amplitudes.

In this case, the interaction between two solitary waves having initial velocities νl = −νr = 0.4
and initial phases xl = −xr = −20 is studied. Numerical integration is carried out for
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Figure 8. (Continued.)

0 � t � 60, time step length �t = 0.02 and spatial step length N = 512. Two solitary
waves of equal amplitude are placed along the x-axis: the one on the left is set moving in the
right direction, while the other one on the right is moving in the left direction. Consequently,
these two solitary waves will have a head-on collision later on. The resulting evolution of
the solution is plotted against time in figure 5. It is clear from the pictures that after the
collision solitary waves do not preserve themselves. Figure 6 shows the amplitude curves of
the solutions. It is found that before the collision of the two solitary waves, the waveforms
keep their amplitudes near invariable. However, after the collision, the amplitudes oscillate
rapidly. The fact that amplitudes are not restored after interaction indicates that interactions
between solitary waves are not elastic, i.e., a certain exchange of energy takes place between
solitary waves during interaction. Figure 7 exhibits the graphs of three dimensions and contour
plots of numerical solutions for the collision of two solitary waves in case 1. We can conclude
that (1) the initial symmetric shape of solitary waves is preserved during the interaction, (2)
for the φ component of the solution, after the interaction we observe an interaction of the
dispersive tails following the two solitary waves as they separate and an enlargement of the
ripples in front of them, and (3) for the ψ component of the solution, the initial solitary waves
spawn a well-defined hierarchy of multiple secondary solitary waves.

Case 2: head-on collision of solitary waves with non-equal amplitudes.

In a similar manner, we discuss interaction of two solitary waves having initial velocities
νl = 0.2 and νr = −0.4. The simulation of their temporal evolution was done on time interval
[0, 60] with �t = 0.02 and N = 512. Case 2 corresponds to the collision of a right-going
soliton with a larger peak value of amplitude and a left-going soliton with a smaller value
of amplitude. The numerical solution for the collision process is plotted in figures 8 and 9.
Figure 10 shows the amplitude curves of the solutions which implies that the collision between
solitary waves is not elastic. From these pictures, we view that the features of the collision
of solitary waves are basically the same as in the previous case. However, some differences
are still observed: (1) for φ component of solitary waves, the amplitude of the lower solitary
wave increases, whereas the high one decreases after interaction; (2) for ψ component of
solitary waves, the amplitude of the left-going wave (with speed ν = 0.4) increases while the
amplitude of the right-going wave (with speed ν = 0.2) decreases after interaction. This is an
interesting phenomenon; and (3) phase shifts appear for both components of solitary waves
during interaction.
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Figure 9. Collisions of two solitary waves in case 2. Top plot: |φ|, bottom plot: −ψ .
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Figure 10. Amplitudes of solitary waves against time. Left plot: φ component, right plot: ψ

component.

5. Conclusion

Numerical experiments in the study of the solitary wave dynamics is an important research
approach, because the exact solution of nonlinear equations is generally unknown. This paper
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studied the interaction of two solitary waves of the KGZE (5). We presented a multisymplectic
formulation for the KGZE (5). Based on this formulation, we developed a multisymplectic
pseudospectral method for discretizating the KGZE. The method is implicit, of spectral
accuracy in space and second-order accuracy in time. Numerical experiments demonstrate
the remarkable capacity of this method for simulating the propagation and the collision of the
solitary waves in long-time integration.
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